

Compiling Quantum Circuits

Abtin Molavi, Amanda Xu, Swamit Tannu, Aws Albarghouthi ASPLOS 2025 Tutorial

Outline

Part I: Quantum Computing Fundamentals

A. Qubits, gates, and circuits

B. Quantum algorithms

C. Quantum Hardware & Error-correction

Part II: Quantum-Circuit Optimization

A. Rewrite rules

B. Circuit resynthesis

C. Scheduling

Part III: Qubit Mapping and Routing

A. QMR for near-term devices

B. QMR for fault-tolerant devices

Part IV: A tour of wisq

Quantum Computing Fundamentals

Bits and qubits

Classical bit

1

0

Qubit

Qubit states

Position on the surface of a sphere is a 2D vector

We write these vectors like this:

Measurement

Quantum mechanics forbids direct access to α and β

Implication: $|a|^2 + |\beta|^2 = 1$

The X gate

Gates transform the state of a qubit

Classical NOT: $0 \rightarrow 1, 1 \rightarrow 0$ Quantum NOT: $\alpha |0\rangle + \beta |1\rangle \rightarrow \beta |0\rangle + \alpha |1\rangle$

In other words,

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$
$$X \begin{bmatrix} \alpha \\ \beta \end{bmatrix} = \begin{bmatrix} \beta \\ \alpha \end{bmatrix}$$

The Hadamard gate

Produces equal superposition of states

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$H|0\rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$$

$$H|1\rangle = \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle)$$

Single qubit gates

2x2 (unitary) matrices

$$X = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

$$H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

Rotations on the Bloch Sphere

Multi-qubit systems

```
Two qubit state:
```

 $\alpha_1|00\rangle + \alpha_2|01\rangle + \alpha_3|10\rangle + \alpha_4|11\rangle$

Controlled-NOT (CNOT gate): "Quantum XOR" $|xy\rangle \mapsto |x(x \oplus y)\rangle$

Quantum circuits

Quantum Algorithms

Next: two examples of computing with quantum circuits

- Deutsch-Jozsa (first exponential speedup found)
- Grover's search algorithm

Just for motivation: algorithmic details aren't crucial

Won't get cover other important applications

- Shor's Algorithm
- Hamiltonian Simulation

Deutsch-Jozsa Problem

Given oracle access to a function $f : \{0,1\}^n \rightarrow \{0,1\}$

Promised that *f* is either *constant* or *balanced*

e.g.
$$f(x_1 ... x_n) = 1$$

e.g. $f(x_1 ... x_n) = x_1$

How many queries do we need to figure out which? Classically: $2^{n-1} + 1$ Quantum: 1

Deutsch-Jozsa Circuit

Quantum operations must be unitary, so we use a reversible oracle

 $U_{\rm f}(|xy\rangle) = |x(y \oplus f(x))\rangle$

Deutsch-Jozsa w/ Concrete Oracle

Here's the circuit where f is the "NOT" function

Grover's Problem

 $O(\sqrt{N})$ Quantum speedup for unstructured search

Again, have oracle access to a function $f : \{0,1\}^n \rightarrow \{0,1\}$

Looking for the element(s) x out of $N = 2^n$ choices such that f(x) = 1.

How many queries do we need? Classically: *N* Quantum: $\approx \frac{\pi}{4}\sqrt{N}$

Geometric intuition for Grover's

Grover Circuit

An example single-iteration circuit where our target state is $|10\rangle$

The NISQ era

Noisy Intermediate-Scale Quantum

Lack resources for error correction (instead rely on error *mitigation*) Sample many runs due to low probability of error-free outcome

Most promising applications find approximate solutions:

- Quantum Approximate Optimization Algorithm
- Variational Quantum Eigensolver

Quantum Error Correction

Encode a logical qubit into several physical qubits Reduce error by scaling the logical qubit

Prerequisite for exciting applications like Shor's, Quantum simulation

Surface codes in hardware

Realization Supercondu	of an Error-Correcting Surface Code with cting Qubits	
<u>Youwei Zhao^{1,2,3,*}, Yan</u> Zhu ^{1,2,3} , <u>Zuolin Wei^{1,2,3}</u>	gsen Ye ^{1,2,3,*} , <u>He-Liang Huang</u> ^{1,2,3,*} , <u>Yiming Zhang</u> ^{1,2,3} , <u>Dachao Wu</u> ^{1,2,3} , <u>Huijie Guan</u> ^{1,2,3} , <u>Qingling</u> , <u>Tan He</u> ^{1,2,3} et al.	
Show more 💙	Article Published: 09 December 2024	
Phys. Rev. Lett. 129 , 03	Quantum error correction below the surface	code

The Quantum Software Stack

/*

A single Grover iteration for oracle F on N qubits

