Qubit Mapping and Routing

Circuit \
Compiler

o

Physical connectivity constraints

Valid instruction schedule

25

NISQ Qubit Mapping and Routing

Connectivity is limited

‘l‘l‘l’l‘l'l‘l’l‘l‘l'l’l'l'l'l’

o [[o

- , / 0:0:0:6:0:0:0:6 0202020-0 x0x0
physical qubit : 8 8 8

‘l‘l.l’l‘l‘l‘l’l‘l'l'l’l‘l‘l'l’

H H H H

‘l’l‘l‘l‘l’l‘l‘l' ’l'l'l'l’l'l‘
H H H H

o ‘l‘l’l’l‘l‘l’l‘l‘l‘l’l‘l.l‘l’

[o o [

0-3-0-5-0-3-0 5-0-’-0-5-0 -
s s s s
‘l‘l‘l’l‘l‘l‘l’l‘l‘l‘l:l‘l‘l‘l:
® ® ® ® coupling link

Connectivity is limited

The SWAP gate

S =
£
I

A

3/

A
¢V

"

Routing with added SWAPs

() (") () (75) €3 cnoT 1y, 15 §\|’\|V6\$ pzf,png

NISQ Qubit Mapping and Routing
p

~

qo : /L ¢ ¢
q1 - —p

—)—C)—) n— @
qs : T(

Architecture Circuit

_ J

4

/ do 7 P1 P1 - /L ® ®
D

V

~

-
41 7 Po Do
d2 & D2
qs » Ps3 p2 - o—P D

p3 - T

\ Initial Mapping Circuit with inserted SWAPs /

Extra two-qubit gates are costly!

ibm_marrakesh

QPU status e Online
Processor type Heron r2
Qubits 2Q error (best/layered)

156 1.23e-3/3.88e-3

CLOPS

195K

Willow System Metrics

Number of qubits 105

oy 3.47
Average connectivity (4-woy typical)
Quantum Error Correction (Chip1)
Single-qubit gate error’ 0.035% + 0.029%
(mean, simultanecus) R o <
Two-qubit gate error’ 0.33% £ 0.18%
(mean, simultaneous)
Measurement error 0.77% £ 0.21%
(mean, simultanecus) (repetitive, measure qubits)

Multi-level reset (|1) state and above)

fesatoptions Leakage removal (|2) state only)

T time

2
) 68us+13 us
Error correction cycles 909,000

per second {surface code cycle = 11 us)
Application performance A,,=214£0.02

32

A spectrum of approaches

Heuristic-based solvers
(MQT-A*, tket, SABRE, ...)

Constraint-based solvers
(OLSQ, MQT-Exact, SATMAP, ...)

v

A

Scale to large instances
Solutions can be far from
optimal

Optimal or near optimal solutions

Cannot handle large inputs

33

SABRE
“SWAP-based BidiREctional Search”

Method of choice for the IBM gqiskit compiler

Tackling the Qubit Mapping Problem for NISQ-Era
Quantum Devices

Gushu Li, Yufei Ding, and Yuan Xie

Unversity of California, Santa Barbara, CA, 93106, USA
{gushuli,yufeiding,yuanxie } @ucsb.edu

34

The SABRE routing loop

. Execute any gates that we can
2. Compute the front layer of non-executable gates F

3. Generate a set of candidate SWAPs
- Those acting on qubits in F

4. Choose the candidate with best heuristic cost

—

repeat until
all gates executed

35

SABRE Routing in Action

CNOT gq4,q,
CNOT g3, 494

Candidates

SWAP q4, qs
SWAP q4, g5
SWAP q,, q4
SWAP q,, gx
SWAP q,, q3
SWAP q4, q¢
SWAP q3, g6

Distance

1+2=3
1+3=4
3+1=4
1+2=3
1+1=2
2+1=3
2+1=3

36

Choosing a heuristic

How we define the “best” SWAP is crucial to the algorithm

The cost from the last slide is called the basic heuristic

SABRE also includes a lookahead and decay variant

37

Lookahead heuristic

Also consider the immediate successors of the front layer, E

/ adjustable weight
1 o k e
H = F] Z dist (i, 7) + Wl z dist (7, 7),
(i.j)eF (.7)€E

A i A o

W "
basic component lookahead component

38

Decay heuristic

Avoid repeated SWAPs on the same qubit
Apply a decay to each qubit, increases with every SWAP

H = max(decay(SWAP.q1),decay(SWAP.q;)) * (1 Y dist(i, j) + % Y dist(i, j)

| | (i,j)eF

39

Comparing heuristics

Best choice depends on your objective!

17500

15000

12500

10000

Swap Count
\l
(@)
o
o

5000

2500

4 » B x @

Swap Count vs. Number of Qubits

Heuristic Y v
Basic v %
Lookahead '“,‘ﬁ-
Decay v ‘,‘:
Depth .'g“ [y
Critical g" g -

20 40 60 80 100 120
Number of Qubits

4000
3500
3000
2500

<

o 2000

)]

1500
1000
500

0

[]
®
|
A
v

Depth vs. Number of Qubits

Heuristic o
Basic x
Lookahead s "
Decay B
Depth . ’i.'xx e .
Critical LY [

20 40 60 80 100 120
Number of Qubits

“LightSABRE: A Lightweight and Enhanced SABRE Algorithm” Zou, Treinish, Hartman, Ivrii, Lishman 40

BiDIREctional Mapping

Original Circuit Reverse Circuit

=) qi g * = qi *—o l D =
= o, Fa =] 2 =}

q; & hy g q-i Fant & % g
nga q4 = i Fai) m q4 P! i i E Q
= = = =
= ds P 'E_ Qs Fam? ra s
E Y Fant P : Ty Fa II\ E
i =} s —@® ey & ¥s s —@ - & P

1

i

Final mapping for a reversed circuit is a good initial mapping for the original

Enables a mapping refining loop: solve the forward problem, then reverse, then repeat

41

SATMAP

Constraint-based approaches: encode a problem in the form:

Optimize objective function
subject to constraints

Qubit Mapping and Routing via MaxSAT

Abtin Molavi, Amanda Xu, Martin Diges, Lauren Pick, Swamit Tannu, Aws Albarghouthi
University of Wisconsin-Madison, Madison, WI, USA
{amolavi, axu44, mdiges, Ipick2, stannu, albarghouthi } @ wisc.edu

42

Satisfiability (SAT) solving

Goal: find an assignment of Boolean variables such that the full formula evaluates to true

f] 4 T)
a—> True
“ (ak;/)b) Ad_'c ,] SAT Solver b—> True
a or b) and not ¢ J 'L J c —> False

_ y,

NP-complete, but often tractable in practice!

Many years of solver engineering: https://satcompetition.github.io/

MaxSAT solving

The optimization analogue of satisfiability solving

Express solution cost with soft constraints

[

(aVvb)A-c
“(a or b) and not c”

[

]
)

L

MaxSAT Solver }

(

.

a—> True

~\

b —> False

c —> False

J

44

Encoding overview

Introduce the following sets of Boolean variables:
« map(q,p,t): Logical qubit q is mapped to physical qubit p at step t
- swap(p,p’,t): A SWAP operation is executed on edge (p,p’) at step t

Constraints encode
- The maps are injective functions
- Two-qubit gates are executable
« SWAPs transform maps

Pay a cost of 1 for each swap variable set to true

45

Maps are injective functions
For each pair of distinct circuit qubits g and ¢’
map(q,p,t) - —map(q’,p,t)

For each pair of distinct physical qubits p and p’
map(q,p,t) - -map(q,p’, t)

46

Two qubit gates are executable

For each two-qubit gate g,(q,q")

map(q,p, k) Amap(q,p’, k)
(p,p')E Edges

SWAPs transform maps

“no-op” SWAP

For each step t and swap (py,p,) IN Edges U {(0,0)}
swap(py, p2,t) = (map(q,p,t — 1) <> map(q, w.(p),t))

where
T.(p1) = P2 Te(p2) = p1

m,(p) = p otherwise

48

Minimize SWAPs

Soft constraint for each step t and edge (p,p’)
cost(swap(p,p’,t)) = 1

Note: “No-op” swap is free

49

Challenge: scaling with gate count

Search space grows exponentially with two-qubit gates count
Global constraint-solving is infeasible for large circuits

SATMAP approach: take a more “local” view

50

Circuit slicing

ldea: Solve one subproblem at a time and stitch together

Qo —T —P T | ST P '
qi : ?
1 1 l T P T -
3 - —D—X s> r —— Tt S T s> J\ T Tt =
ga - —|HMHT —p -TAH—H— 1 T——®—T
X v
MaxSAT] final f MaxSAT final MaxSAT final
constraints | config | constraints | config | constraints | config
Full solution

\4

a
\VV

1

| ©&—

&

A\ 4

J MaxSAT]

1 constraints

\4

[Subcircuit 1 solution

Subcircuit 2 solution

Subcircuit 3 solution

Subcircuit 4 solution]

51

Slicing with reuse

Some applications, like QAOA, have repeating subcircuits

Just need to solve one of these

T T T

\L/ L/
92 - O—D O—D
qs - O—D O—D
Cyclic MaxSAT
constraints constraints
J' Full solution

[Subcircuit 1 solution Subcircuit 1 solution

52

Scaling with parallel solvers

‘ Input

fork

o,

Solver 1

Clauses

-

A

“Quantum Circuit Mapping Based on Incremental and Parallel SAT Solving'’

Salver 2

add o

X add ¢

Solver 3

(4

Yang et al.

International Conference on Theory and Applications of Satisfiability Testing (2024)

53

Not all SWAPs have the same cost

< C @ quantum-computing.ibm.com/services/resources?system=ibmq_manila

Calibration data

Qubit:

Frequency (GHz) v

Avg 4.971
v

[
min 4.838 max 5.065
Connection:

CNOT error v

Avg 8.353e-3

hd

G
min 5.483e-3 max 1.276e-2

B Table view

Last calibrated: 2 minutes ago

N2

R

54

Variation-aware approaches

Not All Qubits Are Created Equal
A Case for Variability-Aware Policies for NISQ-Era Quantum Computers

Swamit S. Tannu Moinuddin K. Qureshi
swamit@gatech.edu moin@gatech.edu
Georgia Institute of Technology Georgia Institute of Technology
Atlanta, Georgia Atlanta, Georgia

Heuristic solver

Noise-Adaptive Compiler Mappings
for Noisy Intermediate-Scale Qquantum Computers

Prakash Murali* Jonathan M. Baker Ali Javadi Abhari
Princeton University University of Chicago IBM T. J. Watson Research Center

Frederic T. Chong Margaret Martonosi

University of Chicago Princeton University

Heuristic solver & constraint-based solver

55

Surface Code
Mapping and Routing

Quantum Error Correction

Encode a logical qubit into several physical qubits
Reduce error by scaling the logical qubit

Prerequisite for exciting applications

. 1 1
Shor’s algorithm, T B - B
. . pos jof o fod o o
Quantum simulation 1 I o i o
of o J o o K28 o)5
4 Y X

3x3

“1 error at a time”
17 qubits

o o o
jof] o Bofl o Bof o
jog] o Bofl o Bofl o oo
jof] o Bofl o Bof o
jof]l o Bofl o Bofl o oo
jof] o Bofl o Bof o
jog] o Bofl o Bofl o oo
o = =

7x7

“3 errors at a time”
97 qubits

https://research.google/blog/making-quantum-error-correction-work/

57

O

O

o

Two-qubit gates via lattice surgery

Lattice surgery: Logical qubits can be merged and split

Two qubit gates require lattice surgery with an intermediary

“A High Performance Compiler for Very Large Scale
Surface Code Computations” Watkins et al.
Quantum 8, 1354 (2024). 58

“Code Deformation and Lattice Surgery are Gauge Fixing”
Vuillot et al. New J. Phys. 21 (2019)

A graph model

OHOHOHOHO
OHOHOHOHO
OHOHOHOHO
ﬁ\\//\\/fu
OHOHOHOHO

59

Preserving parallelism

do -
=
q2 :

Two step execution Single step execution

We need to choose our map and gate routes carefully to avoid serializing parallel gates

60

Magic state T gates

We cannot directly apply a T gate to encoded logical qubits

T gate is implemented via a CNOT gate with a “magic state”

1)) —e S T)

m) —— A —

Surface Code Mapping and Routing

qo - /T\ Must be horizontal

Must be vertical ‘
@
0w —{T— N eee
Circuit
- o0

Goal: Minimize # of steps

q1 : D

Fault-tolerant architecture Magic state qubits for T gates

62

The DASCOT approach

Mapping takes dependency-aware view
minimizes conflicts between parallel gates

Routing searches for a strategy to maximize criticality
better than a fixed heuristic

™

Both powered by
simulated annealing

63

Mapping via interaction graphs

Interaction graph
(prior work)

qo -

San G

X|

@

SP

q2 :
qs -

fan
N
fan
N
o

No useful information for choosing a mapping

Dependency-aware mapping

qo -
qi :
qz :
q3 :

Layered interaction graph
2 3 4 5 (DAScCOT)

H—e

o—e

R
N
JARY
N

o—e

AR
N

Captures the pair with the potential for blocking

65

Dependency-aware mapping

Conflict: Edge pair sharing label and overlapping bounding boxes

Search for a map that minimizes conflicts with simulated annealing

i

X Conflicts: 1

@

@

v/ Conflicts: 0

66

Searching the space of gate orders

Greedily routing the “best” gate is suboptimal

qo *
qi :
qz :
qs :

o—

O

@

S
(&)

O

90 O

7

7
NN

4

®

@

Search the space of routing orders with simulated annealing

Dependency-aware: weigh gates by criticality

67

Optimal SCMR

We have also encoded the SCMR problem into SAT
Increment the number of steps until satisfiable

Many of the same ideas as the NISQ case,
with new formulas to represent the no-crossing constraint

Feasible for circuits with tens of gates and qubits

68

What's changed?

Mapping: distance doesn’'t matter (directly), focus on conflicts
Routing: conflicts between gates mean that order matters

No added gates; execution time is primary objective

69

A Specification Language for
Qubit Mapping and Routing

Returning to our Abstract Picture

Quantum pro rqrn\
-

o

=

Valid instruction schedule

Physical connectivity constraints

Variations on a theme

We have seen two examples, but there are many more

What if some qubits are more reliable that others? [Tannu19]
What if qubits can physically move during execution? [Wang24]
What if we can natively execute gates over >2 qubits? [Silva24]

What if...

72

A “compiler generator” for QMR

— compiler
generator
QMR problem specification

Compiler -
111111 /

%X

Another look at a QMR solution @

Jdo 91 93
qdo - ,L » * Step Gates Qubit Map
- q1 :
@ ~ J> do 7 P1
9 - S q1 7 Do
1 -)
05 T & go ~ (Po,P1) d, = Dy
Circuit 43 ™ P3
2 g1~ (p1,02)
3 g2 ~ (p3,p2)
LILLL]
& E OO——o—®)
- o d
= 4 g3 = (p1,p2) 1™ Po

TTTTT1 q; - P3
Architecture qs ~ P>

QMR generically

Shared between problems
Data types:
Step, Gate, Arch, Map

Constraints:
Steps respect dependency
Maps are injective functions

Unique to each problem
How do | implement a gate?
How can | transition between steps?

Step Gates Qubit Map
do 7 P1
d1 7 Po

1 — ,
go — (Do, P1) dr = Do
ds ©— P3
2 g1~ (p1,02) -
3 g2 = (p3,p2) -
do ™ P1
d1 ™ Po
4 - ,
93 (p1,p2) 4y — D1

75

GateRealization]|

name = ‘PhysicalCnot'

data = (u : Location, v : Location)

realize_gate

if Arch.contains_edge((Step.map[Gate.qubits[0]],Step.map[Gate.qubits[1]]))

then Some(GateRealization{u=Step.map[Gate.qubits[0]],v=Step.map[Gate.qubits[1]]})

else None
]
Transition[
name = 'Swap'
data = (edge : (Location,Location))

get_transitions

= (map(lx| -> Transition{edge = x}, Arch.edges()))
.push(Transition{edge = (Location(®),Location(0))})

apply = value_swap(Transition.edge.0, Transition.edge.1)
cost = if (Transition.edge)==(Location(0®), Location(®)) then 0.0 else 1.0

The full spec in our language

76

