
Qubit Mapping and Routing
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Compiler
Circuit

Physical connectivity constraints 

Valid instruction schedule 

EXE
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NISQ Qubit Mapping and Routing
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Connectivity is limited

physical qubit

coupling link 
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Connectivity is limited

CNOT 𝑝1, 𝑝3
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The SWAP gate

29



Routing with added SWAPs

SWAP 𝑝2, 𝑝3

CNOT 𝑝1, 𝑝2
CNOT 𝑝1, 𝑝3
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NISQ Qubit Mapping and Routing

Architecture Circuit

𝑞0 ↦ 𝑝1

𝑞1 ↦ 𝑝0

𝑞2 ↦ 𝑝2

 𝑞3 ↦ 𝑝3 

Initial Mapping Circuit with inserted SWAPs
31



Extra two-qubit gates are costly!
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A spectrum of approaches

Scale to large instances
Solutions can be far from 
optimal

Optimal or near optimal solutions
Cannot handle large inputs

Heuristic-based solvers
(MQT-A*, tket, SABRE, ...)

Constraint-based solvers
(OLSQ, MQT-Exact, SATMAP, … ) 
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SABRE
“SWAP-based BidiREctional Search”

Method of choice for the IBM qiskit compiler 
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The SABRE routing loop
1. Execute any gates that we can
2. Compute the front layer of non-executable gates F
3. Generate a set of candidate SWAPs 

 -  Those acting on qubits in F
4.  Choose the candidate with best heuristic cost

repeat until 
all gates executed
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SABRE Routing in Action

CNOT 𝑞1, 𝑞2

CNOT   𝑞3, 𝑞4

…

𝒒𝟐 𝒒𝟒

𝒒𝟏

𝑞5

𝒒𝟑 𝑞6

Candidates   
SWAP 𝑞1, 𝑞5 
SWAP 𝑞1, 𝑞3 
SWAP 𝑞2, 𝑞4 
SWAP 𝑞2, 𝑞5

SWAP 𝑞2, 𝑞3 
SWAP 𝑞4, 𝑞6

SWAP 𝑞3, 𝑞6

Distance   
1+2=3
1+3=4
3+1=4
1+2=3
1+1=2
2+1=3
2+1=3
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Choosing a heuristic
How we define the “best” SWAP is crucial to the algorithm

The cost from the last slide is called the basic heuristic

SABRE also includes a lookahead and decay variant
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Lookahead heuristic
Also consider the immediate successors of the front layer, E

adjustable weight
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Decay heuristic

Avoid repeated SWAPs on the same qubit  
Apply a decay to each qubit, increases with every SWAP

39



Comparing heuristics
Best choice depends on your objective!

“LightSABRE: A Lightweight and Enhanced SABRE Algorithm” Zou, Treinish, Hartman, Ivrii, Lishman 40



BiDiREctional Mapping

Final mapping for a reversed circuit is a good initial mapping for the original

Enables a mapping refining loop: solve the forward problem, then reverse, then repeat
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SATMAP

Optimize objective function 
subject to constraints

Constraint-based approaches: encode a problem in the form:
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Satisfiability (SAT) solving

SAT Solver(𝑎 ∨ 𝑏) ∧ ¬𝑐
“(a or b) and not c”

a −>  True
b −>  True
c −>  False 

Goal: find an assignment of Boolean variables such that the full formula evaluates to true

NP-complete, but often tractable in practice!

Many years of solver engineering: https://satcompetition.github.io/
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MaxSAT solving

MaxSAT Solver(𝑎 ∨ 𝑏) ∧ ¬𝑐
“(a or b) and not c”

a −>  True
b −>  False
c −>  False 

𝑐𝑜𝑠𝑡(𝑎)  =  1
𝑐𝑜𝑠𝑡(𝑏)  =  2

The optimization analogue of satisfiability solving

Express solution cost with soft constraints
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Encoding overview
Introduce the following sets of Boolean variables:

• 𝑚𝑎𝑝(𝑞, 𝑝, 𝑡): Logical qubit 𝑞 is mapped to physical qubit 𝑝 at step t
• 𝑠𝑤𝑎𝑝 𝑝, 𝑝’, 𝑡 : A SWAP operation is executed on edge 𝑝, 𝑝’  at step t

Constraints encode
• The maps are injective functions
• Two-qubit gates are executable
• SWAPs transform maps

Pay a cost of 1 for each swap variable set to true
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Maps are injective functions
For each pair of distinct circuit qubits 𝑞 and 𝑞’

𝑚𝑎𝑝 𝑞, 𝑝, 𝑡 → ¬𝑚𝑎𝑝 𝑞′, 𝑝, 𝑡

For each pair of distinct physical qubits p and 𝑝′

   𝑚𝑎𝑝 𝑞, 𝑝, 𝑡 → ¬𝑚𝑎𝑝 𝑞, 𝑝′, 𝑡
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Two qubit gates are executable
For each two-qubit gate 𝑔𝑘 𝑞, 𝑞′

ሧ

𝑝,𝑝′ ∈ 𝐸𝑑𝑔𝑒𝑠

𝑚𝑎𝑝 𝑞, 𝑝, 𝑘 ∧ 𝑚𝑎𝑝(𝑞′, 𝑝′, 𝑘)
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SWAPs transform maps
For each step 𝑡 and swap 𝑝1, 𝑝2  in 𝐸𝑑𝑔𝑒𝑠 ∪ { 0,0 } 

𝑠𝑤𝑎𝑝 𝑝1, 𝑝2, 𝑡 → (𝑚𝑎𝑝 𝑞, 𝑝, 𝑡 − 1 𝑚𝑎𝑝 𝑞, 𝜋𝑒(𝑝), 𝑡 )

where
   𝜋𝑒 𝑝1 = 𝑝2  𝜋𝑒 𝑝2 = 𝑝1

   𝜋𝑒 𝑝 = 𝑝 otherwise

 

“no-op” SWAP
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Minimize SWAPs
Soft constraint for each step t and edge (𝑝, 𝑝’)

𝑐𝑜𝑠𝑡 𝑠𝑤𝑎𝑝 𝑝, 𝑝′, 𝑡 = 1

Note: “No-op” swap is free
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Challenge: scaling with gate count
Search space grows exponentially with two-qubit gates count

Global constraint-solving is infeasible for large circuits

SATMAP approach: take a more “local” view
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final 
config

Circuit slicing 

MaxSAT 
constraints

MaxSAT 
constraints 

MaxSAT 
constraints 

MaxSAT 
constraints 

final 
config

final 
config

Subcircuit 1 solution Subcircuit 2 solution Subcircuit 3 solution Subcircuit 4 solution

Idea: Solve one subproblem at a time and stitch together

Full solution
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Slicing with reuse
Some applications, like QAOA, have repeating subcircuits
Just need to solve one of these

MaxSAT 
constraints

Subcircuit 1 solution Subcircuit 1 solution

Cyclic 
constraints

Full solution
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Scaling with parallel solvers

“Quantum Circuit Mapping Based on Incremental and Parallel SAT Solving” Yang et al. 
International Conference on Theory and Applications of Satisfiability Testing (2024) 
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Not all SWAPs have the same cost
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Variation-aware approaches

Heuristic solver Heuristic solver & constraint-based solver

55



Surface Code 
Mapping and Routing
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Quantum Error Correction 
Encode a logical qubit into several physical qubits 

Reduce error by scaling the logical qubit

Prerequisite for exciting applications
 Shor’s algorithm, 
 Quantum simulation

https://research.google/blog/making-quantum-error-correction-work/
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Two-qubit gates via lattice surgery
Lattice surgery: Logical qubits can be merged and split 

Two qubit gates require lattice surgery with an intermediary

“A High Performance Compiler for Very Large Scale 
Surface Code Computations” Watkins et al. 
Quantum 8, 1354 (2024).

“Code Deformation and Lattice Surgery are Gauge Fixing” 
Vuillot et al. New J. Phys. 21 (2019) 58



A graph model
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Preserving parallelism

         

      

      

    

      

  
 

  
 

    

  
 

  
 

  
 

  
 

         

                   

    

  
 

  
 

      

    

      

  
 

  
 

    

Blocked gate 

Single step executionTwo step execution

We need to choose our map and gate routes carefully to avoid serializing parallel gates
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Magic state T gates
We cannot directly apply a T gate to encoded logical qubits

T gate is implemented via a CNOT gate with a “magic state”
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Surface Code Mapping and Routing

    

  

Circuit

Fault-tolerant architecture Magic state qubits for T gates

Goal: Minimize # of steps

Must be vertical

Must be horizontal
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The DASCOT approach 

Mapping takes dependency-aware view
 minimizes conflicts between parallel gates

Routing searches for a strategy to maximize criticality
 better than a fixed heuristic

Both powered by 
simulated annealing

63



Mapping via interaction graphs

Interaction graph 
(prior work)

No useful information for choosing a mapping
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Dependency-aware mapping

Layered interaction graph 
(DASCOT)

Captures the pair with the potential for blocking
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Dependency-aware mapping
Conflict: Edge pair sharing label and overlapping bounding boxes

Search for a map that minimizes conflicts with simulated annealing

Conflicts: 0Conflicts: 1
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Searching the space of gate orders
Greedily routing the “best” gate is suboptimal

Search the space of routing orders with simulated annealing
Dependency-aware: weigh gates by criticality 
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Optimal SCMR
We have also encoded the SCMR problem into SAT

Increment the number of steps until satisfiable

Many of the same ideas as the NISQ case, 
with new formulas to represent the no-crossing constraint

Feasible for circuits with tens of gates and qubits
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What’s changed?
Mapping: distance doesn’t matter (directly), focus on conflicts

Routing: conflicts between gates mean that order matters

No added gates; execution time is primary objective
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A Specification Language for 
Qubit Mapping and Routing
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Compiler
Quantum program

Physical connectivity constraints 

Valid instruction schedule 

EXE

Returning to our Abstract Picture

71



Variations on a theme
We have seen two examples, but there are many more

What if some qubits are more reliable that others? [Tannu19]

What if qubits can physically move during execution? [Wang24]

What if we can natively execute gates over >2 qubits? [Silva24]

What if…
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Compiler EXE

Compiler 
generator

QMR problem specification 

A “compiler generator” for QMR
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Another look at a QMR solution

Circuit

Architecture

𝑔0 𝑔1

𝑔2

𝑔3

Step Gates Qubit Map

1 𝑔0 ↦ (𝑝0, 𝑝1) 

𝑞0 ↦ 𝑝1

𝑞1 ↦ 𝑝0

𝑞2 ↦ 𝑝2

 𝑞3 ↦ 𝑝3 

2 𝑔1 ↦ (𝑝1, 𝑝2) -- 

3 𝑔2 ↦ (𝑝3, 𝑝2) --

4 𝑔3 ↦ (𝑝1, 𝑝2) 

𝑞0 ↦ 𝑝1

𝑞1 ↦ 𝑝0

𝒒𝟐 ↦ 𝒑𝟑

𝒒𝟑 ↦ 𝒑𝟐 

EXE
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QMR generically
Step Gates Qubit Map

1 𝑔0 ↦ (𝑝0, 𝑝1) 

𝑞0 ↦ 𝑝1

𝑞1 ↦ 𝑝0

𝑞2 ↦ 𝑝2

 𝑞3 ↦ 𝑝3 

2 𝑔1 ↦ (𝑝1, 𝑝2) -- 

3 𝑔2 ↦ (𝑝3, 𝑝2) --

4 𝑔3 ↦ (𝑝1, 𝑝2) 

𝑞0 ↦ 𝑝1

𝑞1 ↦ 𝑝0

𝒒𝟐 ↦ 𝒑𝟑

𝒒𝟑 ↦ 𝒑𝟐 

Shared between problems
Data types:

 Step, Gate, Arch, Map

Constraints:
 Steps respect dependency
 Maps are injective functions

Unique to each problem
How do I implement a gate?
How can I transition between steps?
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The full spec in our language

GateRealization[

    name = ‘PhysicalCnot'

    data = (u : Location, v : Location)

    realize_gate = if Arch.contains_edge((Step.map[Gate.qubits[0]],Step.map[Gate.qubits[1]]))

            then Some(GateRealization{u=Step.map[Gate.qubits[0]],v=Step.map[Gate.qubits[1]]})

            else None

]

Transition[

    name = 'Swap'

    data = (edge : (Location,Location))

    get_transitions = (map(|x| -> Transition{edge = x}, Arch.edges()))

   .push(Transition{edge = (Location(0),Location(0))})

    apply = value_swap(Transition.edge.0, Transition.edge.1)

    cost = if (Transition.edge)==(Location(0), Location(0)) then 0.0 else 1.0

]
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