
Compiling Quantum Circuits
Abtin Molavi, Amanda Xu, Swamit Tannu, Aws Albarghouthi

SPLASH 2025 Tutorial

1

Outline
Part I: Quantum Computing Fundamentals
 A. Qubits, gates, and circuits
 B. Quantum Hardware & Error-correction
Part II: Quantum-Circuit Optimization
 A. Rewrite rules
 B. Circuit resynthesis
 C. Scheduling
Part III: Qubit Mapping and Routing
 A. QMR for near-term devices
 B. QMR for fault-tolerant devices
` C. A programing language for QMR problems
Part IV: A tour of wisq

2

Quantum Computing
Fundamentals

3

Bits and qubits
0

1

Classical bit Qubit

4

Qubit states
Position on the surface of a sphere is a 2D vector

We write these vectors like this:

Complex numbers

𝜓 = 𝛼 0 + 𝛽|1⟩

Basis vectors

5

Measurement
Quantum mechanics forbids direct access to 𝛼 and 𝛽

Implication: 𝑎 2 + 𝛽 2 = 1

𝛼 0 + 𝛽|1⟩
0 with prob. 𝛼 2

1 with prob. 𝛽 2

6

The X gate
Gates transform the state of a qubit

Classical NOT: 0 → 1, 1→ 0
Quantum NOT: 𝛼 0 + 𝛽 1 → 𝛽 0 + 𝛼|1⟩

In other words,
𝑋 = 0 1

1 0

𝑋
𝛼
𝛽 = 𝛽

𝛼

7

The Hadamard gate
Produces equal superposition of states

𝐻 = 1
2

1 1
1 – 1

H 0 =
1
2

|0 + 1)

H 1 =
1
2

|0 − 1)

8

Single qubit gates
2x2 (unitary) matrices Rotations on the Bloch Sphere

𝑋 = 0 1
1 0

𝐻 = 1
2

1 1
1 −1

9

Multi-qubit systems
Two qubit state:

𝛼1 00 + 𝛼2 01 + 𝛼3 10 + 𝑎4 11

Controlled-NOT (CNOT gate):
 “Quantum XOR”

𝑥𝑦 ↦ |𝑥 𝑥 ⊕ 𝑦 ⟩

10

Quantum circuits

time

H q0;
CNOT q0, q1;

11

You can run circuits on real devices!

12

The NISQ era
Noisy Intermediate-Scale Quantum

Lack resources for error correction (instead rely on error mitigation)
Sample many runs due to low probability of error-free outcome

Most promising applications find approximate solutions:
 - Quantum Approximate Optimization Algorithm
 - Variational Quantum Eigensolver

13

Quantum Error Correction
Encode a logical qubit into several physical qubits
Reduce error by scaling the logical qubit

Prerequisite for exciting applications like Shor’s, Quantum simulation

https://research.google/blog/making-quantum-error-correction-work/

One promising approach
Surface Codes

14

Surface codes in hardware

15

The Quantum Software Stack

16

High-level Program

High-level Circuit

Circuit in Native Basis Gates

Quantum-Circuit Optimizer

Optimized Circuit

Mapping and Routing

Hardware

	Intro + Background
	Slide 1: Compiling Quantum Circuits
	Slide 2: Outline
	Slide 3: Quantum Computing Fundamentals
	Slide 4: Bits and qubits
	Slide 5: Qubit states
	Slide 6: Measurement
	Slide 7: The X gate
	Slide 8: The Hadamard gate
	Slide 9: Single qubit gates
	Slide 10: Multi-qubit systems
	Slide 11: Quantum circuits
	Slide 12: You can run circuits on real devices!
	Slide 13: The NISQ era
	Slide 14: Quantum Error Correction
	Slide 15: Surface codes in hardware
	Slide 16: The Quantum Software Stack

	QMR
	Slide 17: Qubit Mapping and Routing
	Slide 18
	Slide 19: NISQ Qubit Mapping and Routing
	Slide 20: Connectivity is limited
	Slide 21: Connectivity is limited
	Slide 22: The SWAP gate
	Slide 23: Routing with added SWAPs
	Slide 24: NISQ Qubit Mapping and Routing
	Slide 25: Extra two-qubit gates are costly!
	Slide 26: A spectrum of approaches
	Slide 27: Constraint-based Approach
	Slide 28: Satisfiability (SAT) solving
	Slide 29: MaxSAT solving
	Slide 30: Encoding overview
	Slide 31: Maps are injective functions
	Slide 32: Two qubit gates are executable
	Slide 33: SWAPs transform maps
	Slide 34: Minimize SWAPs
	Slide 35: Challenge: scaling with gate count
	Slide 36: Circuit slicing
	Slide 37: Surface Code Mapping and Routing
	Slide 38: Quantum Error Correction
	Slide 39: Two-qubit gates via lattice surgery
	Slide 40: A graph model
	Slide 41: Preserving parallelism
	Slide 42: The DASCOT Approach
	Slide 43: Optimal SCMR
	Slide 44: Check out the OOPSLA talk for more!
	Slide 45: What’s changed?
	Slide 46: A Specification Language for Qubit Mapping and Routing
	Slide 47: Based on work conditionally accepted to POPL 26
	Slide 48: Returning to our Abstract Picture
	Slide 49: Variations on a theme
	Slide 50: A Compiler Generator for QMR
	Slide 51: Another look at a QMR solution
	Slide 52: QMR generically
	Slide 53: To get a solver for a QMR problem, just write a Marol program defining it
	Slide 54
	Slide 55: Constructing a maximal step
	Slide 56: Solving our example
	Slide 57
	Slide 58: Avoiding duplicated work
	Slide 59: Isolating problem differences
	Slide 60: Building Up the Stack

	Untitled Section
	Slide 61: A tour of wisq
	Slide 62: wisq General Workflow
	Slide 63: wisq Demo

