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Outline 
Part I: Quantum Computing Fundamentals
 A. Qubits, gates, and circuits
 B. Quantum Hardware & Error-correction
Part II: Quantum-Circuit Optimization
 A. Rewrite rules
 B. Circuit resynthesis
 C. Scheduling
Part III: Qubit Mapping and Routing
 A. QMR for near-term devices
 B. QMR for fault-tolerant devices
` C. A programing language for QMR problems
Part IV: A tour of wisq
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Quantum Computing 
Fundamentals
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Bits and qubits
0

1

Classical bit Qubit
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Qubit states
Position on the surface of a sphere is a 2D vector

We write these vectors like this:
 

Complex numbers

𝜓 = 𝛼 0 + 𝛽|1⟩ 

Basis vectors

5



Measurement
Quantum mechanics forbids direct access to 𝛼 and 𝛽 

Implication: 𝑎 2 + 𝛽 2 = 1

𝛼 0 + 𝛽|1⟩
0  with prob. 𝛼 2

1  with prob. 𝛽 2
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The X gate
Gates transform the state of a qubit

Classical NOT: 0 → 1, 1→ 0
Quantum NOT: 𝛼 0 + 𝛽 1 → 𝛽 0 + 𝛼|1⟩ 

In other words,
𝑋 = 0 1

1 0  
 

𝑋
𝛼
𝛽 = 𝛽

𝛼

7



The Hadamard gate
Produces equal superposition of states

𝐻 = 1
2

1 1
1 – 1  

H 0 =
1
2

|0 + 1 )

H 1 =
1
2

|0 − 1 )
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Single qubit gates
2x2 (unitary) matrices Rotations on the Bloch Sphere

𝑋 = 0 1
1 0  

𝐻 = 1
2

1 1
1 −1  
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Multi-qubit systems
Two qubit state:

𝛼1 00 + 𝛼2 01 + 𝛼3 10 + 𝑎4 11

Controlled-NOT (CNOT gate):
 “Quantum XOR”

𝑥𝑦 ↦ |𝑥 𝑥 ⊕ 𝑦 ⟩
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Quantum circuits

time

H q0;
CNOT q0, q1;
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You can run circuits on real devices!
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The NISQ era
Noisy Intermediate-Scale Quantum

Lack resources for error correction (instead rely on error mitigation)
Sample many runs due to low probability of error-free outcome

Most promising applications find approximate solutions: 
 - Quantum Approximate Optimization Algorithm
 - Variational Quantum Eigensolver
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Quantum Error Correction 
Encode a logical qubit into several physical qubits 
Reduce error by scaling the logical qubit

Prerequisite for exciting applications like Shor’s, Quantum simulation

https://research.google/blog/making-quantum-error-correction-work/

One promising approach
Surface Codes
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Surface codes in hardware
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The Quantum Software Stack
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High-level Program

High-level Circuit

Circuit in Native Basis Gates

Quantum-Circuit Optimizer

Optimized Circuit

Mapping and Routing

Hardware
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