
Qubit Mapping and Routing
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Compiler
Circuit

Physical connectivity constraints 

Valid instruction 
schedule 

EXE
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NISQ Qubit Mapping and Routing
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Connectivity is limited

physical qubit

coupling link 
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Connectivity is limited

CNOT 𝑝1, 𝑝3

21



The SWAP gate

22



Routing with added SWAPs

SWAP 𝑝2, 𝑝3
CNOT 𝑝1, 𝑝2

CNOT 𝑝1, 𝑝3

23



NISQ Qubit Mapping and Routing

Architecture Circuit

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝑞2 ↦ 𝑝2
 𝑞3 ↦ 𝑝3 

Initial Mapping Circuit with inserted SWAPs
24



Extra two-qubit gates are costly!

25



A spectrum of approaches

Scale to large instances
Solutions can be far from optimal

Optimal or near optimal solutions
Cannot handle large inputs

Heuristic-based solvers
(MQT-A*, tket, SABRE, ...)

Constraint-based solvers
(OLSQ, MQT-Exact, SATMAP, … ) 

26



Constraint-based Approach
Encode QMR as an optimization problem; solve with existing tools

27

(ILP, SMT, MaxSAT…)
Constraint Solving

Encode
EXE

Decode



Satisfiability (SAT) solving

SAT Solver(𝑎 ∨ 𝑏) ∧ ¬𝑐
a −>  True
b −>  True
c −>  False 

Goal: find an assignment of Boolean variables such that the full formula evaluates to true

NP-complete, but often tractable in practice!

Many years of solver engineering: https://satcompetition.github.io/

28



MaxSAT solving

MaxSAT Solver(𝑎 ∨ 𝑏) ∧ ¬𝑐
a −>  True
b −>  False
c −>  False 

¬𝑎, 1
(¬𝑏, 2)

The optimization analogue of satisfiability solving

Express solution cost with soft constraints

29



Encoding overview
Introduce the following sets of Boolean variables:

• 𝑚𝑎𝑝(𝑞, 𝑝, 𝑡): Logical qubit 𝑞 is mapped to physical qubit 𝑝 at step t
• 𝑠𝑤𝑎𝑝 𝑝, 𝑝’, 𝑡 : A SWAP operation is executed on edge 𝑝, 𝑝’  at step t

Constraints encode
• The maps are injective functions
• Two-qubit gates are executable
• SWAPs transform maps

Pay a cost of 1 for each swap variable set to true

30



Maps are injective functions
For each pair of distinct circuit qubits 𝑞 and 𝑞’

𝑚𝑎𝑝 𝑞, 𝑝, 𝑡 → ¬𝑚𝑎𝑝 𝑞′, 𝑝, 𝑡

For each pair of distinct physical qubits p and 𝑝′
   𝑚𝑎𝑝 𝑞, 𝑝, 𝑡 → ¬𝑚𝑎𝑝 𝑞, 𝑝′, 𝑡

31



Two qubit gates are executable
For each two-qubit gate 𝑔𝑘 𝑞, 𝑞′

ሧ
𝑝,𝑝′ ∈ 𝐸𝑑𝑔𝑒𝑠

𝑚𝑎𝑝 𝑞, 𝑝, 𝑘 ∧ 𝑚𝑎𝑝(𝑞′, 𝑝′, 𝑘)

32



SWAPs transform maps
For each step 𝑡 and swap 𝑝1, 𝑝2  in 𝐸𝑑𝑔𝑒𝑠 ∪ { 0,0 } 

𝑠𝑤𝑎𝑝 𝑝1, 𝑝2, 𝑡 → (𝑚𝑎𝑝 𝑞, 𝑝, 𝑡 − 1 𝑚𝑎𝑝 𝑞, 𝜋𝑒(𝑝), 𝑡 )

where
   𝜋𝑒 𝑝1 = 𝑝2  𝜋𝑒 𝑝2 = 𝑝1

   𝜋𝑒 𝑝 = 𝑝 otherwise
 

“no-op” 
SWAP

33



Minimize SWAPs
Soft constraint for each step t and edge (𝑝, 𝑝’)

𝑐𝑜𝑠𝑡 𝑠𝑤𝑎𝑝 𝑝, 𝑝′, 𝑡 = 1

Note: “No-op” swap is free

34



Challenge: scaling with gate count
Search space grows exponentially with two-qubit gates count

Global constraint-solving is infeasible for large circuits

SATMAP approach: take a more “local” view

35



final 
config

Circuit slicing 

MaxSAT 
constraints

MaxSAT 
constraints 

MaxSAT 
constraints 

MaxSAT 
constraints 

final 
config

final 
config

UNSAT

initial config

Subcircuit 1 solution Subcircuit 2 solution Subcircuit 3 solution Subcircuit 4 solution

Idea: Solve one subproblem at a time and stitch together

Full solution

36



Surface Code 
Mapping and Routing

37



Quantum Error Correction 
Encode a logical qubit into several physical qubits 

Reduce error by scaling the logical qubit

Prerequisite for exciting applications
 Shor’s algorithm, 
 Quantum simulation

https://research.google/blog/making-quantum-error-correction-work/
38



Two-qubit gates via lattice surgery
Lattice surgery: Logical qubits can be merged and split 

Two qubit gates require lattice surgery with an intermediary

“A High Performance Compiler for Very Large Scale 
Surface Code Computations” Watkins et al. 
Quantum 8, 1354 (2024).

“Code Deformation and Lattice Surgery are Gauge Fixing” 
Vuillot et al. New J. Phys. 21 (2019) 39



A graph model

40



Preserving parallelism

         

      

      

   •

      

      

   •

      

      

         

                   

   •

      

      

   •

      

      

   •

         

      

      

      

      

      

      

         

                   

      

      

      

      

   •

Blocked gate 

Single step executionTwo step execution

We need to choose our map and gate routes carefully to avoid serializing parallel gates
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The DASCOT Approach

Mapping phase takes dependency-aware view
 minimizes conflicts between parallel gates

Routing phase searches for the best gate routing order 
 better than a fixed prioritization heuristic

Both powered by 
simulated annealing

42



Optimal SCMR
We have also encoded the SCMR problem into SAT

Many of the same ideas as the NISQ case, with new formulas 
to represent the no-crossing constraint
Feasible for circuits with tens of gates and qubits

43

SAT solverencode(circ, arch, k) SAT
SCMR Solution

k = k+1

UNSAT



Check out the OOPSLA talk for more!

44

11:15 on Saturday (18 Oct.) in Orchid Small!



What’s changed?
Mapping: distance doesn’t matter (directly), focus on conflicts

Routing: conflicts between gates mean that order matters

No added gates; execution time is primary objective

45



A Specification Language for 
Qubit Mapping and Routing

46



Based on work conditionally 
accepted to POPL 26

47

arxiv draft available now! 



Compiler
Quantum program

Physical connectivity constraints 

Valid instruction schedule 

EXE

Returning to our Abstract Picture
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Variations on a theme
We have seen two examples, but there are many more

What if some qubits are more reliable that others? [Tannu19]
What if qubits can physically move during execution? [Wang24]
What if we can natively execute gates over >2 qubits? [Silva24]

What if…

49



A Compiler Generator for QMR

Compiler EXE

Compiler generator

Problem specification

The MaxState solver

The Marol language



Another look at a QMR solution

Circuit

Architecture

𝑔0 𝑔1

𝑔2

𝑔3
Step Gates Qubit Map

1 𝑔0 ↦ (𝑝0, 𝑝1) 

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝑞2 ↦ 𝑝2
 𝑞3 ↦ 𝑝3 

2 𝑔1 ↦ (𝑝1, 𝑝2) -- 
3 𝑔2 ↦ (𝑝3, 𝑝2) --

4 𝑔3 ↦ (𝑝1, 𝑝2) 

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝒒𝟐 ↦ 𝒑𝟑
𝒒𝟑 ↦ 𝒑𝟐 

EXE
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QMR generically
Step Gates Qubit Map

1 𝑔0 ↦ (𝑝0, 𝑝1) 

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝑞2 ↦ 𝑝2
 𝑞3 ↦ 𝑝3 

2 𝑔1 ↦ (𝑝1, 𝑝2) -- 
3 𝑔2 ↦ (𝑝3, 𝑝2) --

4 𝑔3 ↦ (𝑝1, 𝑝2) 

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝒒𝟐 ↦ 𝒑𝟑
𝒒𝟑 ↦ 𝒑𝟐 

Shared between problems
Data types:

 Step, Gate, Arch, Map

Constraints:
 Steps respect dependency
 Maps are injective functions

Unique to each problem
How do I implement a gate?
How can I transition between steps?

52



To get a solver for a QMR problem, just write a Marol program defining it



What if I’m interested in variability between different gate error rates? 

Refine your device model with a few lines, no compiler rewrite needed



Constructing a maximal step
fn maximal_step(Arch, Map, Gates, realize_gate)
 Initialize s with qubit map Map
 for g in Gates
  let impls = realize_gate(Arch, Map, Gates) 
  if impls is not empty:
   s.add(𝑔 ↦ 𝑖𝑚𝑝𝑙𝑠. 𝑝𝑜𝑝())
 return s
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Gates Qubit Map

𝑔2 ↦ (𝑝3, 𝑝2) 

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝑞2 ↦ 𝑝2
 𝑞3 ↦ 𝑝3 

get_transitions, 
apply

Transition Qubit Map

Identity

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝑞2 ↦ 𝑝2

 𝑞3 ↦ 𝑝3 

SWAP 𝑝0, 𝑝1

𝑞0 ↦ 𝑝0
𝑞1 ↦ 𝑝1
𝑞2 ↦ 𝑝2
 𝑞3 ↦ 𝑝3

SWAP 𝑝1, 𝑝2

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝2
𝑞2 ↦ 𝑝0
 𝑞3 ↦ 𝑝3

SWAP 𝑝2, 𝑝3

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝑞2 ↦ 𝑝3

 𝑞3 ↦ 𝑝2 

Solving our example
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maximal_state

Gates Qubit Map

{}

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝑞2 ↦ 𝑝2

 𝑞3 ↦ 𝑝3 

{}

𝑞0 ↦ 𝑝0
𝑞1 ↦ 𝑝1
𝑞2 ↦ 𝑝2
 𝑞3 ↦ 𝑝3

{}

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝2
𝑞2 ↦ 𝑝0
 𝑞3 ↦ 𝑝3

𝒈𝟑 ↦ (𝒑𝟏, 𝒑𝟐)

𝐪𝟎 ↦ 𝒑𝟏
𝒒𝟏 ↦ 𝒑𝟎
𝒒𝟐 ↦ 𝒑𝟑

 𝒒𝟑 ↦ 𝒑𝟐 

Transition Qubit Map

Identity

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝑞2 ↦ 𝑝2

 𝑞3 ↦ 𝑝3 

SWAP 𝑝0, 𝑝1

𝑞0 ↦ 𝑝0
𝑞1 ↦ 𝑝1
𝑞2 ↦ 𝑝2
 𝑞3 ↦ 𝑝3

SWAP 𝑝1, 𝑝2

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝2
𝑞2 ↦ 𝑝0
 𝑞3 ↦ 𝑝3

SWAP 𝑝2, 𝑝3

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝑞2 ↦ 𝑝3

 𝑞3 ↦ 𝑝2 
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Avoiding duplicated work
Implement good ideas like SABRE once and for all!

Other examples
Interaction graph embedding
Criticality-awareness

“Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices”
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Isolating problem differences
Formalize the distinctions between problem

Gate blocking is reduced to an automated syntactic check
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