Qubit Mapping and Routing

Circuit

B

Physical connectivity constraints

Compiler

\ 4

Valid instruction
schedule

18

NISQ Qubit Mapping and Routing

Connectivity is limited

.l.l.l’l.l.l.l’l.l.l.l’l.l.l.l’

[] [] [] []

, : / 0:0:0:0=02020:0 0=0=0=0-0 9x0=
physical qubit H H H H

.l;l.l’l.l;l.l’l.l;l.l’l.l;l.l’

¢ & & &

.l’l.l.l.l’l’l.l. ’l'l.l.l’l'l.
¢ & & 8

o .l.l’l.l.l.l’l.l.l.l’l.l.l.l’

(] (] [] []

0-9-0-5-0-3-0 5-0-’-0-5-0 -
1 1 1 1
.l.l.l’l.l.l.l’l.l.l.l’l.l.l.l’
® ® ® ® coupling link

Connectivity is limited

0-0-0-:-0-0-0-:-0-0-0.:
SOE 3008 2908 JNK
y 98 3808 2008 901

The SWAP gate

S =
£
I

Y

A
¢V
 J

WV

¢V

Routing with added SWAPs

) —)—C—0) @ oorpup, NOT 1

NISQ Qubit Mapping and Routing

-

o

qo : L ® \
qi1 : <
(20—)——(r)——() v b
qs : T ¥,
Architecture Circuit /
/ do 7 D1 p1 - ° ° \
d1 7 Do : L
Po - D
q> — P2
gz P P3 p2 - D ? D
pP3 -

\ Initial Mapping

Circuit with inserted SWAPs /

24

Extra two-qubit gates are costly!

ibm_marrakesh

QPU status e Online
Processor type Heron r2
Qubits 2Q error (best/layered)

156 1.23e-3/3.88e-3

CLOPS

Willow System Metrics

Number of qubits

Average connectivity

105

3.47

(4-way typcal)

Quantum Error Correction (Chip1)

Single-qubit gate error’
(mean, simultanecus)

Two-qubit gate error’
(mean, simultaneous)

Measurement error
(mean, simultaneocus)

Reset options

T time
(mean)

Error correction cycles
per second

Application performance

0.035% + 0.029%

0.33% £ 0.18%
(c2)

0.77% £ 0.21%

(repetitive, measure qubits)

Multi-level reset (|1) state and above)
Leakage removal (|2) state only)

68 us * 13 ps?

909,000

(surface code cycle = 1.1 us)

A,.,=21420.02

25

A spectrum of approaches

Heuristic-based solvers
(MQT-A*, tket, SABRE, ...)

Constraint-based solvers
(OLSQ, MQT-Exact, SATMAP, ...)

A

Scale to large instances
Solutions can be far from optimal

v

Optimal or near optimal solutions

Cannot handle large inputs

26

Constraint-based Approach

Encode QMR as an optimization problem; solve with existing tools

@ Encode (ILP, SMT, MaxSAT...) Decode
" " | Constraint Solving "

%

Qubit Mapping and Routing via MaxSAT

Abtin Molavi, Amanda Xu, Martin Diges, Lauren Pick, Swamit Tannu, Aws Albarghouthi
Umiversity of Wisconsin-Madison, Madison, W1, USA

{amolavi, axudd, mdiges, Ipick2, stannu, albarghouthi } @ wisc.edu

27

Satisfiability (SAT) solving

Goal: find an assignment of Boolean variables such that the full formula evaluates to true

(

[oo]
L

NP-complete, but often tractable in practice!

ha

[(aVb)A-=c

Many years of solver engineering: https://satcompetition.github.io/

.

a—> True
b —> True
c —> False

~

J

28

MaxSAT solving

The optimization analogue of satisfiability solving

Express solution cost with soft constraints

[(aVb)A-=c

1

ha

{

MaxSAT Solver

)

(

)

(ﬂa, 1)
(=b,2)

.

a—> True

~

b —> False

c —> False

J

29

Encoding overview

Introduce the following sets of Boolean variables:
* map(q,p, t): Logical qubit g is mapped to physical qubit p at step t
« swap(p,p’,t): A SWAP operation is executed on edge (p,p’) at step t

Constraints encode

- The maps are injective functions
- Two-qubit gates are executable
« SWAPs transform maps

Pay a cost of 1 for each swap variable set to true

30

Maps are injective functions
For each pair of distinct circuit qubits ¢ and ¢’
map(q,p,t) - -map(q’, p, t)

For each pair of distinct physical qubits p and p’
map(q,p,t) » —map(q,p’,t)

31

Two qubit gates are executable

For each two-qubit gate g, (g, q")

map(q,p, k) Amap(q',p’, k)
(p,p')E Edges

32

SWAPs transform maps

Ilno_opn

For each step t and swap (p;,p,) IN Edges U {(0,0)}
swap(py, P2, t) = (map(q,p,t — 1) © map(q, 7. (p), t))

where
T.(p1) = P2 T (p2) = p1

m,(p) = p otherwise

33

Minimize SWAPSs

Soft constraint for each step t and edge (p,p")
cost(swap(p,p’,t)) =1

Note: “No-op” swap is free

34

Challenge: scaling with gate count

Search space grows exponentially with two-qubit gates count
Global constraint-solving is infeasible for large circuits

SATMAP approach: take a more “local” view

35

Circu

|dea: Solve one sub

it slicing

oroblem at a time and stitch together

¢go: : —{IT w— DM —D— P —D—o—

qq1:: ——e®

g2 T +—P— Tt @ T DT P i

43— XX lr—-—%“f il @€ D /L i i /I :f S E/'T\ /L D /L

944’ - — 1] o —H— THFr—=e B H— M ——&>—T——®—@FH—D —e—O—H—D
L .

[MaxSAT] final f MaxSAT] final _f MaxSAT i MaxSAT]

constraints) config | constraints | config | constraints l config l constraints

initial config
v Full solution

v

[Subcircuit 1 solution

Subcircuit 2 solution

Subcircuit 3 solution

Subcircuit 4 solution]

36

Surface Code
Mapping and Routing

Quantum Error Correction

Encode a logical qubit into several physical qubits
Reduce error by scaling the logical qubit

Prerequisite for exciting applications

. P
Shor’s algorithm, T - B - I

. . = o o Bof o po
Quantum simulation o I TN - oL - S

of o 3 oyl o fodl o J

w Y X

3x3
“1 error at a time”
17 qubits

o1 1 1
jof] o Bofl o Bofl o Pod
o Bof o Rof o o
jof] o Bofl o Rog o Ro
o Bof o Bof o Pos
jof] o ol o RBof o Ro
o Bof o Bogd o Ro
94 g =
7x7

“3 errors at a time”
97 qubits

https://research.google/blog/making-quantum-error-correction-work/

38

Two-qubit gates via lattice surgery

Lattice surgery: Logical qubits can be merged and split

Two qubit gates require lattice surgery with an intermediary

Q7Q7 o o0 o0 « Q :
{ "o n 0o el ="
N W .
{20e

| |
.)
O

“A High Performance Compiler for Very Large Scale
Surface Code Computations” Watkins et al.
Quantum 8, 1354 (2024). 39

“Code Deformation and Lattice Surgery are Gauge Fixing”
Vuillot etal. New J. Phys. 21 (2019)

O

N

OV)
N

N

O OTOTOO
OrOOOO
O OTOTOTO
OrrOrOOO

O

A graph model

40

Preserving parallelism

do -
-
q2 :

Two step execution Single step execution

We need to choose our map and gate routes carefully to avoid serializing parallel gates

41

The DASCOT Approach

Both powered by
simulated anneadling

Mapping phase takes dependency-aware view —
minimizes conflicts between parallel gates

Routing phase searches for the best gate routing order —
better than a fixed prioritization heuristic

42

Optimal SCMR

We have also encoded the SCMR problem into SAT
UNSAT

} |

k = k+1
. SAT :
encode(circ, arch, k) |—> [SAT solver Q] > | SCMR Solution |

o

Many of the same ideas as the NISQ case, with new formulas
to represent the no-crossing constraint

Feasible for circuits with tens of gates and qubits

43

Check out the OOPSLA talk for more!

7« Dependency-Aware Compilation for Surface Code Quantum Architectures

Practical applications of quantum computing depend on fault-tolerant devices with error correction. We study the problem of compiling
quantum circuits for quantum computers implementing surface codes. Optimal or near-optimal compilation is critical for both efficiency
and correctness. The compilation problem requires (1) mapping circuit qubits to the device qubits and (2) routing execution paths
between interacting qubits. We solve this problem efficiently and near-optimally with a novel algorithm that exploits the dependency
structure of circuit operations to formulate discrete optimization problems that can be approximated via simulated annealing, a classic and
simple algorithm. Our extensive evaluation shows that our approach is powerful and flexible for compiling realistic workloads.

Abtin Molavi % Amanda Xu

University of Wisconsin-Madison ,‘ University of Wisconsin-Madison

Swamit Tannu . "= Aws Albarghouthi

University of Wisconsin-Madison : ,i"‘ r, University of Wisconsin-Madison
~ United States

11:15 on Saturday (18 Oct.) in Orchid Small!

44

What's changed?

Mapping: distance doesn’t matter (directly), focus on conflicts
Routing: conflicts between gates mean that order matters

No added gates; execution time is primary objective

45

A Specification Language for
Qubit Mapping and Routing

Based on work conditionally
accepted to POPL 26

2508.10781v1 [cs.PL] 14 Aug 2025

arxiv

Generating Compilers for Qubit Mapping and Routing

ABTIN MOLAVI, University of Wisconsin-Madison, USA
AMANDA XU, University of Wisconsin-Madison, USA

ETHAN CECCHETTI, University of Wisconsin-Madison, USA
SWAMIT TANN U, University of Wisconsin-Madison, USA

AWS ALBARGHOUTHI, University of Wisconsin-Madison, USA

Quantum computers promise to solve important problems faster than classical computers, potentially unlock-
ing breakthroughs in materials science, chemistry, and beyond. Optimizing compilers are key to realizing
this potential, as they minimize expensive resource usage and limit error rates. A compiler must convert
architecture-independent quantum circuits to a form executable on a target quantum processing unit (Qpu).
A critical step is qubit mapping and routing (QMR), which finds mappings from circuit qubits to Qpu qubits
and plans instruction execution while satisfying the Qpu’s constraints. The challenge is that the landscape
of quantum architectures is incredibly diverse and fast-evolving. Given this diversity, hundreds of papers
have addressed the QMR problem for different qubit hardware, connectivity constraints, and quantum error
correction schemes. For each new set of constraints, researchers develop specialized compilation algorithms.

We present an approach for automatically generating qubit mapping and routing compilers for arbitrary
quantum architectures. Though each QMR problem is different, we identify a common core structure—device
state machine—that we use to formulate an abstract QMR problem. Our formulation naturally leads to a domain-
specific language, Marol, for specifying QMR problems—for example, the well-studied N1sQ mapping and
routing problem requires only 12 lines of Marol. We demonstrate that QMR problems, defined in Marol, can be
solved with a powerful parametric solver that can be instantiated for any Marol program. We evaluate our
approach through case studies of important QMR problems from prior and recent work, covering noisy and
fault-tolerant quantum architectures on all major hardware platforms. Our thorough evaluation shows that
generated compilers are competitive with handwritten, specialized compilers in terms of runtime and solution
quality. For instance, for the well-studied N1sQ mapping and routing problem, we find solutions that match
or improve upon the leading industrial toolkit Qisk1T on half of the benchmarks. On the newly introduced
interleaved logical qubit architecture, we outperform the proposed baseline compilation pipeline in solution
quality for 93% of benchmarks. We envision that our approach will simplify development of future quantum
compilers as new quantum architectures continue to emerge.

1 Introduction

Quantum computation promises to surpass classical methods in important domains, potentially
unlocking breakthroughs in materials science, chemistry, machine learning, and beyond. Quantum
computing is at an inflection point: scientists are scaling quantum hardware [11, 20], demonstrating
practical quantum error correction protocols [15], and exploring promising application domains [29].
However, to fully realize the potential of quantum hardware available today and on the horizon,
we need optimizing quantum circuit compilers. A compiler must convert architecture-independent,
circuit-level descriptions of quantum programs to a form executable on a target quantum processing
unit (Qpu). Inefficient compilation that induces significant runtime overhead is unacceptable. For
one, access to quantum compute is limited and costly. Further, quantum computation is error-prone,
and longer computations are associated with a higher probability of a logical error, even when
quantum error-correcting codes are applied.

arxivdraft available now!

47

Returning to our Abstract Picture

Quantum progrqm\ :
Compiler >
HEEEN
/ Valid instruction schedule

B

Physical connectivity constraints

Variations on a theme

We have seen two examples, but there are many more

hat if some gubits are more reliable that others? [Tannul9]
hat if qubits can physically move during execution? [Wang24]
nat if we can natively execute gates over >2 qubits? [Silva24]

= ==

What if...

49

A Compiler Generator for QMR

The MaxState solver

Problem specification
The Marol language

r

.

Compiler generator

~

J

[~ ¢

%X

i

.

Compiler

Another look at a QMR solution @

Jdo 91 93
qo - L * * Step Gates Qubit Map
= g2 do 7 P1
qz - D—P d1 © Do
1 - ,
. T 4 go= @or) ")
Circuit ds = D3
2 g1~ (p1,02)
3 g2 » (p3,02)
LILlll
— N qo 7 D1
@ E @ @ & @ 4 ,93 - (P1»P2) CI1 = pO
TTTIT q: ~ P3

Architecture qs; - Py

QMR generically

Shared between problems
Data types:
Step, Gate, Arch, Map

Constraints:
Steps respect dependency
Maps are injective functions

Unique to each problem
How do | implement a gate?
How can | transition between steps?

Step Gates Qubit Map
do 7™ P1
d1 7 Do

1 —)
go ~ (Do, P1) Gy = P,
ds = D3
2 g1~ (p1,2) -
3 g2 = (p3,02) ==
do ™ P1
d1 7 Po
4 - ,
gz ~ (p1,02) q ~ Ps

52

RoutelInfo:
GateRealization{edge : (Loc,Loc)}
routed gates = [CX]
realize gate = map(|x| — GateRealization{edge = x},
Arch.edges between(State.map[Gate.qubits[0]], State.map[Gate.qubits[1]]))

TransitionInfo:
Transition{edge : (Loc,Loc)}
get transitions = map(|x| — Transition{edge = x}, Arch.edges())

apply = value swap(QubitMap, Trans.edge.(0), Trans.edge. (1))
cost = if Trans == IdTrans

then 0.0
else 1.0

To get a solver for a QMR problem, just write a Marol program defining it

What if I'm interested in variability between different gate error rates?

RouteInfo:
TransitionInfo:

cost = if Trans = IdTrans
then 0.0
else Arch.edge cost[Trans.edge.(0)][Trans.edge.(1)]
ArchInfo:
Arch{edge cost : List[List[Float]]}
StateInfo:
cost=fold (0O,
|acc,x| — acc+x,
map(|x| — Arch.edge cost[State.map[x.qubits[0]]][State.map[x.qubits[1]]],
State.route))

Refine your device model with a few lines, no compiler rewrite needed

Constructing a maximal step

fn maximal_step(Arch, Map, Gates, realize_gate)
Initialize s with qubit map Map
for g in Gates
let impls = realize_gate(Arch, Map, Gates)
if impls is not empty:
s.add(g — impls.pop())
returns

55

Solving our example

Gates Qubit Map
do 7 P1 R
d1 = Po '
-
g2 = (P3,P2) q, © Py get_transitions,
qz ™ D3 apply

Transition

Qubit Map

|ldentity

SWAP Po, P1

SWAP P1,P2

SWAP D2, DP3

o ™ P1
d1 7 Po
qz 7 D2
qz = P3

do 7 Po
qi1 7 D1
qz 7 P2
43 7 P3

o ™ D1
q1 7 D2
dz = Po
q3 = P3

do ™ D1
d1 7 Po
qz = P3
q3z 7~ P2

56

Transition

Qubit Map

Identity

SWAP Po, P1

SWAP pq, D2

SWAP P2, P3

do 7 P1
d1 7 Po
qz 7 D2
q3 7 P3

do 7 Po
q1 7 D1
qz 7 P2
q3 = P3

do & P1
q1 7 D2
2 7 Po
qz = P3

do 7 P1
d1 7 Po
qz 7 P3
43 = D2

Gates

Qubit Map

n
»

maximal_state

U

U

U

gz~ (pl) pZ)

o ™ D1
d1 7 Po
qz 7 P2
qz = P3

do 7 Po
q1 7 D1
qz 7 P2
q3 = P3

o ™ P1
q1 7 D2
dz = Po
qz = P3

do » P1
qd1 > Po
q2 ~ P3
q3 ~ P2

57

Avoiding duplicated work

Implement good ideas like SABRE once and for all!

Original Circuit Reverse Circuit

1 l € * *— qi —Q—o—cv—o—l—e)—l
. o a Q
¥ Ve oD

a
<o A4 o l
o
7

surddepy

q4 Fany ® 6; ® GB

surddepy eniug

£ £ 88 2

surddepy eury
Nel

[enruy pajepd)

Js —®

“Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices”

Other examples
Interaction graph embedding
Criticality-awareness

Isolating problem differences

Formalize the distinctions between problem

Gate blocking is reduced to an automated syntactic check

59

	Intro + Background
	Slide 1: Compiling Quantum Circuits
	Slide 2: Outline
	Slide 3: Quantum Computing Fundamentals
	Slide 4: Bits and qubits
	Slide 5: Qubit states
	Slide 6: Measurement
	Slide 7: The X gate
	Slide 8: The Hadamard gate
	Slide 9: Single qubit gates
	Slide 10: Multi-qubit systems
	Slide 11: Quantum circuits
	Slide 12: You can run circuits on real devices!
	Slide 13: The NISQ era
	Slide 14: Quantum Error Correction
	Slide 15: Surface codes in hardware
	Slide 16: The Quantum Software Stack

	QMR
	Slide 17: Qubit Mapping and Routing
	Slide 18
	Slide 19: NISQ Qubit Mapping and Routing
	Slide 20: Connectivity is limited
	Slide 21: Connectivity is limited
	Slide 22: The SWAP gate
	Slide 23: Routing with added SWAPs
	Slide 24: NISQ Qubit Mapping and Routing
	Slide 25: Extra two-qubit gates are costly!
	Slide 26: A spectrum of approaches
	Slide 27: Constraint-based Approach
	Slide 28: Satisfiability (SAT) solving
	Slide 29: MaxSAT solving
	Slide 30: Encoding overview
	Slide 31: Maps are injective functions
	Slide 32: Two qubit gates are executable
	Slide 33: SWAPs transform maps
	Slide 34: Minimize SWAPs
	Slide 35: Challenge: scaling with gate count
	Slide 36: Circuit slicing
	Slide 37: Surface Code Mapping and Routing
	Slide 38: Quantum Error Correction
	Slide 39: Two-qubit gates via lattice surgery
	Slide 40: A graph model
	Slide 41: Preserving parallelism
	Slide 42: The DASCOT Approach
	Slide 43: Optimal SCMR
	Slide 44: Check out the OOPSLA talk for more!
	Slide 45: What’s changed?
	Slide 46: A Specification Language for Qubit Mapping and Routing
	Slide 47: Based on work conditionally accepted to POPL 26
	Slide 48: Returning to our Abstract Picture
	Slide 49: Variations on a theme
	Slide 50: A Compiler Generator for QMR
	Slide 51: Another look at a QMR solution
	Slide 52: QMR generically
	Slide 53: To get a solver for a QMR problem, just write a Marol program defining it
	Slide 54
	Slide 55: Constructing a maximal step
	Slide 56: Solving our example
	Slide 57
	Slide 58: Avoiding duplicated work
	Slide 59: Isolating problem differences
	Slide 60: Building Up the Stack

	Untitled Section
	Slide 61: A tour of wisq
	Slide 62: wisq General Workflow
	Slide 63: wisq Demo

