
Qubit Mapping and Routing

17

Compiler
Circuit

Physical connectivity constraints

Valid instruction
schedule

EXE

18

NISQ Qubit Mapping and Routing

19

Connectivity is limited

physical qubit

coupling link

20

Connectivity is limited

CNOT 𝑝1, 𝑝3

21

The SWAP gate

22

Routing with added SWAPs

SWAP 𝑝2, 𝑝3
CNOT 𝑝1, 𝑝2

CNOT 𝑝1, 𝑝3

23

NISQ Qubit Mapping and Routing

Architecture Circuit

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝑞2 ↦ 𝑝2
 𝑞3 ↦ 𝑝3

Initial Mapping Circuit with inserted SWAPs
24

Extra two-qubit gates are costly!

25

A spectrum of approaches

Scale to large instances
Solutions can be far from optimal

Optimal or near optimal solutions
Cannot handle large inputs

Heuristic-based solvers
(MQT-A*, tket, SABRE, ...)

Constraint-based solvers
(OLSQ, MQT-Exact, SATMAP, …)

26

Constraint-based Approach
Encode QMR as an optimization problem; solve with existing tools

27

(ILP, SMT, MaxSAT…)
Constraint Solving

Encode
EXE

Decode

Satisfiability (SAT) solving

SAT Solver(𝑎 ∨ 𝑏) ∧ ¬𝑐
a −> True
b −> True
c −> False

Goal: find an assignment of Boolean variables such that the full formula evaluates to true

NP-complete, but often tractable in practice!

Many years of solver engineering: https://satcompetition.github.io/

28

MaxSAT solving

MaxSAT Solver(𝑎 ∨ 𝑏) ∧ ¬𝑐
a −> True
b −> False
c −> False

¬𝑎, 1
(¬𝑏, 2)

The optimization analogue of satisfiability solving

Express solution cost with soft constraints

29

Encoding overview
Introduce the following sets of Boolean variables:

• 𝑚𝑎𝑝(𝑞, 𝑝, 𝑡): Logical qubit 𝑞 is mapped to physical qubit 𝑝 at step t
• 𝑠𝑤𝑎𝑝 𝑝, 𝑝’, 𝑡 : A SWAP operation is executed on edge 𝑝, 𝑝’ at step t

Constraints encode
• The maps are injective functions
• Two-qubit gates are executable
• SWAPs transform maps

Pay a cost of 1 for each swap variable set to true

30

Maps are injective functions
For each pair of distinct circuit qubits 𝑞 and 𝑞’

𝑚𝑎𝑝 𝑞, 𝑝, 𝑡 → ¬𝑚𝑎𝑝 𝑞′, 𝑝, 𝑡

For each pair of distinct physical qubits p and 𝑝′
 𝑚𝑎𝑝 𝑞, 𝑝, 𝑡 → ¬𝑚𝑎𝑝 𝑞, 𝑝′, 𝑡

31

Two qubit gates are executable
For each two-qubit gate 𝑔𝑘 𝑞, 𝑞′

ሧ
𝑝,𝑝′ ∈ 𝐸𝑑𝑔𝑒𝑠

𝑚𝑎𝑝 𝑞, 𝑝, 𝑘 ∧ 𝑚𝑎𝑝(𝑞′, 𝑝′, 𝑘)

32

SWAPs transform maps
For each step 𝑡 and swap 𝑝1, 𝑝2 in 𝐸𝑑𝑔𝑒𝑠 ∪ { 0,0 }

𝑠𝑤𝑎𝑝 𝑝1, 𝑝2, 𝑡 → (𝑚𝑎𝑝 𝑞, 𝑝, 𝑡 − 1 𝑚𝑎𝑝 𝑞, 𝜋𝑒(𝑝), 𝑡)

where
 𝜋𝑒 𝑝1 = 𝑝2 𝜋𝑒 𝑝2 = 𝑝1

 𝜋𝑒 𝑝 = 𝑝 otherwise

“no-op”
SWAP

33

Minimize SWAPs
Soft constraint for each step t and edge (𝑝, 𝑝’)

𝑐𝑜𝑠𝑡 𝑠𝑤𝑎𝑝 𝑝, 𝑝′, 𝑡 = 1

Note: “No-op” swap is free

34

Challenge: scaling with gate count
Search space grows exponentially with two-qubit gates count

Global constraint-solving is infeasible for large circuits

SATMAP approach: take a more “local” view

35

final
config

Circuit slicing

MaxSAT
constraints

MaxSAT
constraints

MaxSAT
constraints

MaxSAT
constraints

final
config

final
config

UNSAT

initial config

Subcircuit 1 solution Subcircuit 2 solution Subcircuit 3 solution Subcircuit 4 solution

Idea: Solve one subproblem at a time and stitch together

Full solution

36

Surface Code
Mapping and Routing

37

Quantum Error Correction
Encode a logical qubit into several physical qubits

Reduce error by scaling the logical qubit

Prerequisite for exciting applications
 Shor’s algorithm,
 Quantum simulation

https://research.google/blog/making-quantum-error-correction-work/
38

Two-qubit gates via lattice surgery
Lattice surgery: Logical qubits can be merged and split

Two qubit gates require lattice surgery with an intermediary

“A High Performance Compiler for Very Large Scale
Surface Code Computations” Watkins et al.
Quantum 8, 1354 (2024).

“Code Deformation and Lattice Surgery are Gauge Fixing”
Vuillot et al. New J. Phys. 21 (2019) 39

A graph model

40

Preserving parallelism

 •

 •

 •

 •

 •

 •

Blocked gate

Single step executionTwo step execution

We need to choose our map and gate routes carefully to avoid serializing parallel gates

41

The DASCOT Approach

Mapping phase takes dependency-aware view
 minimizes conflicts between parallel gates

Routing phase searches for the best gate routing order
 better than a fixed prioritization heuristic

Both powered by
simulated annealing

42

Optimal SCMR
We have also encoded the SCMR problem into SAT

Many of the same ideas as the NISQ case, with new formulas
to represent the no-crossing constraint
Feasible for circuits with tens of gates and qubits

43

SAT solverencode(circ, arch, k) SAT
SCMR Solution

k = k+1

UNSAT

Check out the OOPSLA talk for more!

44

11:15 on Saturday (18 Oct.) in Orchid Small!

What’s changed?
Mapping: distance doesn’t matter (directly), focus on conflicts

Routing: conflicts between gates mean that order matters

No added gates; execution time is primary objective

45

A Specification Language for
Qubit Mapping and Routing

46

Based on work conditionally
accepted to POPL 26

47

arxiv draft available now!

Compiler
Quantum program

Physical connectivity constraints

Valid instruction schedule

EXE

Returning to our Abstract Picture

48

Variations on a theme
We have seen two examples, but there are many more

What if some qubits are more reliable that others? [Tannu19]
What if qubits can physically move during execution? [Wang24]
What if we can natively execute gates over >2 qubits? [Silva24]

What if…

49

A Compiler Generator for QMR

Compiler EXE

Compiler generator

Problem specification

The MaxState solver

The Marol language

Another look at a QMR solution

Circuit

Architecture

𝑔0 𝑔1

𝑔2

𝑔3
Step Gates Qubit Map

1 𝑔0 ↦ (𝑝0, 𝑝1)

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝑞2 ↦ 𝑝2
 𝑞3 ↦ 𝑝3

2 𝑔1 ↦ (𝑝1, 𝑝2) --
3 𝑔2 ↦ (𝑝3, 𝑝2) --

4 𝑔3 ↦ (𝑝1, 𝑝2)

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝒒𝟐 ↦ 𝒑𝟑
𝒒𝟑 ↦ 𝒑𝟐

EXE

51

QMR generically
Step Gates Qubit Map

1 𝑔0 ↦ (𝑝0, 𝑝1)

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝑞2 ↦ 𝑝2
 𝑞3 ↦ 𝑝3

2 𝑔1 ↦ (𝑝1, 𝑝2) --
3 𝑔2 ↦ (𝑝3, 𝑝2) --

4 𝑔3 ↦ (𝑝1, 𝑝2)

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝒒𝟐 ↦ 𝒑𝟑
𝒒𝟑 ↦ 𝒑𝟐

Shared between problems
Data types:

 Step, Gate, Arch, Map

Constraints:
 Steps respect dependency
 Maps are injective functions

Unique to each problem
How do I implement a gate?
How can I transition between steps?

52

To get a solver for a QMR problem, just write a Marol program defining it

What if I’m interested in variability between different gate error rates?

Refine your device model with a few lines, no compiler rewrite needed

Constructing a maximal step
fn maximal_step(Arch, Map, Gates, realize_gate)
 Initialize s with qubit map Map
 for g in Gates
 let impls = realize_gate(Arch, Map, Gates)
 if impls is not empty:
 s.add(𝑔 ↦ 𝑖𝑚𝑝𝑙𝑠. 𝑝𝑜𝑝())
 return s

55

Gates Qubit Map

𝑔2 ↦ (𝑝3, 𝑝2)

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝑞2 ↦ 𝑝2
 𝑞3 ↦ 𝑝3

get_transitions,
apply

Transition Qubit Map

Identity

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝑞2 ↦ 𝑝2

 𝑞3 ↦ 𝑝3

SWAP 𝑝0, 𝑝1

𝑞0 ↦ 𝑝0
𝑞1 ↦ 𝑝1
𝑞2 ↦ 𝑝2
 𝑞3 ↦ 𝑝3

SWAP 𝑝1, 𝑝2

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝2
𝑞2 ↦ 𝑝0
 𝑞3 ↦ 𝑝3

SWAP 𝑝2, 𝑝3

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝑞2 ↦ 𝑝3

 𝑞3 ↦ 𝑝2

Solving our example

56

maximal_state

Gates Qubit Map

{}

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝑞2 ↦ 𝑝2

 𝑞3 ↦ 𝑝3

{}

𝑞0 ↦ 𝑝0
𝑞1 ↦ 𝑝1
𝑞2 ↦ 𝑝2
 𝑞3 ↦ 𝑝3

{}

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝2
𝑞2 ↦ 𝑝0
 𝑞3 ↦ 𝑝3

𝒈𝟑 ↦ (𝒑𝟏, 𝒑𝟐)

𝐪𝟎 ↦ 𝒑𝟏
𝒒𝟏 ↦ 𝒑𝟎
𝒒𝟐 ↦ 𝒑𝟑

 𝒒𝟑 ↦ 𝒑𝟐

Transition Qubit Map

Identity

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝑞2 ↦ 𝑝2

 𝑞3 ↦ 𝑝3

SWAP 𝑝0, 𝑝1

𝑞0 ↦ 𝑝0
𝑞1 ↦ 𝑝1
𝑞2 ↦ 𝑝2
 𝑞3 ↦ 𝑝3

SWAP 𝑝1, 𝑝2

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝2
𝑞2 ↦ 𝑝0
 𝑞3 ↦ 𝑝3

SWAP 𝑝2, 𝑝3

𝑞0 ↦ 𝑝1
𝑞1 ↦ 𝑝0
𝑞2 ↦ 𝑝3

 𝑞3 ↦ 𝑝2

57

Avoiding duplicated work
Implement good ideas like SABRE once and for all!

Other examples
Interaction graph embedding
Criticality-awareness

“Tackling the Qubit Mapping Problem for NISQ-Era Quantum Devices”

58

Isolating problem differences
Formalize the distinctions between problem

Gate blocking is reduced to an automated syntactic check

59

	Intro + Background
	Slide 1: Compiling Quantum Circuits
	Slide 2: Outline
	Slide 3: Quantum Computing Fundamentals
	Slide 4: Bits and qubits
	Slide 5: Qubit states
	Slide 6: Measurement
	Slide 7: The X gate
	Slide 8: The Hadamard gate
	Slide 9: Single qubit gates
	Slide 10: Multi-qubit systems
	Slide 11: Quantum circuits
	Slide 12: You can run circuits on real devices!
	Slide 13: The NISQ era
	Slide 14: Quantum Error Correction
	Slide 15: Surface codes in hardware
	Slide 16: The Quantum Software Stack

	QMR
	Slide 17: Qubit Mapping and Routing
	Slide 18
	Slide 19: NISQ Qubit Mapping and Routing
	Slide 20: Connectivity is limited
	Slide 21: Connectivity is limited
	Slide 22: The SWAP gate
	Slide 23: Routing with added SWAPs
	Slide 24: NISQ Qubit Mapping and Routing
	Slide 25: Extra two-qubit gates are costly!
	Slide 26: A spectrum of approaches
	Slide 27: Constraint-based Approach
	Slide 28: Satisfiability (SAT) solving
	Slide 29: MaxSAT solving
	Slide 30: Encoding overview
	Slide 31: Maps are injective functions
	Slide 32: Two qubit gates are executable
	Slide 33: SWAPs transform maps
	Slide 34: Minimize SWAPs
	Slide 35: Challenge: scaling with gate count
	Slide 36: Circuit slicing
	Slide 37: Surface Code Mapping and Routing
	Slide 38: Quantum Error Correction
	Slide 39: Two-qubit gates via lattice surgery
	Slide 40: A graph model
	Slide 41: Preserving parallelism
	Slide 42: The DASCOT Approach
	Slide 43: Optimal SCMR
	Slide 44: Check out the OOPSLA talk for more!
	Slide 45: What’s changed?
	Slide 46: A Specification Language for Qubit Mapping and Routing
	Slide 47: Based on work conditionally accepted to POPL 26
	Slide 48: Returning to our Abstract Picture
	Slide 49: Variations on a theme
	Slide 50: A Compiler Generator for QMR
	Slide 51: Another look at a QMR solution
	Slide 52: QMR generically
	Slide 53: To get a solver for a QMR problem, just write a Marol program defining it
	Slide 54
	Slide 55: Constructing a maximal step
	Slide 56: Solving our example
	Slide 57
	Slide 58: Avoiding duplicated work
	Slide 59: Isolating problem differences
	Slide 60: Building Up the Stack

	Untitled Section
	Slide 61: A tour of wisq
	Slide 62: wisq General Workflow
	Slide 63: wisq Demo

